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Visitors are always welcome!



Research in the NeuroMechatronics Lab (NML)

Integration of neuroscience and engineering principles to develop technology 
that communicates directly with the nervous system to restore or enhance 
human abilities
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Sensing

Implanted Brain-Computer 
Interfaces

Wearable myoelectric 
interfaces

Stimulating

Restore sensation

Reduce pain

Increase arousal

Reanimate paralyzed limbs



Brain-computer
interfaces

Muscle-computer
interfaces

Topics

Sensing and interpreting motor 
signals for human-computer 
interaction

Stimulating motor function after 
paralysis

Spinal Dorsal Rootlet
Stimulation after 
Stroke



Implantable sensors for brain-
computer interfaces (BCI)
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The BCI industrial revolution

Early innovators: Neural Signals, Inc. (1987) and Cyberkinetics (~2002)
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Drew, L., 2023, “Decoding the Business of Brain–computer Interfaces,” Nature Electronics, 6(2), pp. 90–95.

implantables

n=10 n=2



Decoding

BCI Concept

action = f(neural signals)

example: 𝑉𝑡 = σ𝑖=1
𝑁 𝑤𝑖 ∗ 𝐹𝑖𝑟𝑖𝑛𝑔𝑅𝑎𝑡𝑒𝑡

𝑖

Neural 
Firing 
Rates

𝑉𝑡

MEMS
Sensors

Microelectronics



Example: sensing and decoding brain signals to control 
a robotic arm
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Sensor Technology:
Silicon microelectrode arrays 
(n=100 electrodes)



Emerging tech: “injectable” sensors for the brain

Intracortical BMI Endovascular BMI
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credit: Synchron, Inc.



Stentrode Endovascular BCI

• Nitinol stent scaffold

• 16 x 500 μm diameter platinum electrodes

• Inserted via catheter through jugular vein to 
the superior sagittal sinus adjacent to motor 
cortex 

credit: Synchron

Mitchell P, et al. 
JAMA Neurol. 2023



Wearable sensors for 
detecting motor signals
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An estimated 80% of people with “complete” SCI retain 
some myoelectric function below level of injury (Sherwood et al, 1992)

13

Injury site in 
spinal cord

”Spared” 
motor neurons

(Ting, et al, J Neurophys, 2021)



High-density electromyography (HDEMG) sensors
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Figure adapted from 
Farina & Holobar, 2016

Time (ms)

Motor unit 
decomposition

Motor unit 
spikes



Motor neuron ”spikes” encode attempted action

Extension

Flexion

NMF

15(Ting, et al, J Neurophys, 2021)



Muscle Biopotential Signals as Input Controllers
(Collaboration with Meta Reality Labs)
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Amplifying Spared Motor  
Function using Spinal Cord 

Stimulation
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Stroke Damages Motor and Sensory Neural Circuits

Effects
• Muscle weakness 

throughout the 
limb

• Abnormal 
coordination

• Spasticity

• Impaired sensation

Stroke

motor
sensory
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Electrical Stimulation Excites Motor Neurons by 
Targeting Sensorimotor Circuits in Spinal Cord

Pulse 
generator 
(“pacer”)Spinal Cord 

Electrodes
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motor

sensory



Pilot Clinical Trial:
Dorsal Rootlet Stimulation (DRS) for Stroke

n = 7 (so far) patients with chronic 
hemiplegia, 1+ years post-stroke

Impairment levels range from 
moderate to severe with mild to 
severe spasticity

2 x 8-channel linear arrays implanted 
percutaneously for 4 weeks and then 
removed

External stimulator with custom 
controller
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DRS facilitates hand function (Day 1)

“I have not 

been able to 

open my hand 

in 9 years”

-SCS01
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DRS Improves Function for Daily Activities
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Summary

Implantable and wearable sensors can detect and interpret 
motor intent to restore independent motor function to 
people with severe paralysis.

Electrical stimulation of sensory neurons can amplify motor 
output and improve motor control in the arm and hand in 
people with chronic hemiplegia after stroke



Questions?

dougweber@cmu.edu

@dougweberlab

@NeuroMechLabX

contact info:
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Funding

mailto:dougweber@cmu.edu
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US Trial 
Milestones July 2022

US first-in-
human trial 
began

1st participant 
implanted - ALS

Sep. 2022

2nd participant 
implanted - ALS

Dec. 2022

3rd participant 
implanted - ALS

Apr. 2023

4th participant 
implanted-
Brainstem 
stroke

June 2023

5th participant 
implanted - ALS

Aug. 2023

6th participant 
implanted - ALS
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DRS Improves Manual Dexterity
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